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1. INTRODUCTION 

Max Born (1926) proposed the statistical interpretation of quantum 
mechanics and there is no doubt that it well describes the statistics of 
pointer readings. Is this knowledge sufficient to understand the physical 
reality of microparticles, i.e., can a physical theory be complete if nothing 
behind the statistics of pointer readings is assumed? Such questions arose 
shortly after Born's proposal in the Bohr-Einstein debate, which culmi- 
nated in the famous Einstein-Podolsky-Rosen paradox (Einstein et al., 

1935). Later investigations led to Bell (1964)-type inequalities. The experi- 
mental tests by A. Aspect and co-workers gave deep insight into the 
physical situation: If somebody believes in the physical reality of acciden- 
tal properties of a single microparticle described by some kind of hidden 
variables, then he or she has to assume the existence of action at a 
distance. 

The occurrence of pointer positions can be described in terms of 
quantum mechanics and quantum statistics as a physical process. The 
description of this process can be understood as an analysis of how we get 
knowledge about microsystems by their interaction with a measuring 
apparatus. The experiments to be analyzed have a very general scheme: 
There is one part of the experimental setup that isolates a microparticle 
from its surroundings in a particular manner and another one that re- 
sponds because of interaction with it by a certain pointer position. It is 
suggestive to assume the microparticle to carry some message from the first 
part of the setup, the source of information, to the second, the receiver. 
This message, if it is any, can only be transmitted if it is coded into some 
property of the microparticte. If the language of the statistical theory of 
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information can be used to describe this setup, one probably obtains new 
aspects about the nature of quantum systems. 

In the following, I first give a short introduction to the theory of 
quantum measurements and then I describe the situation in terms of the 
statistical theory of information. 

2. THE THEORY OF QUANTUM MEASUREMENTS 

As already mentioned, quantum experimental setups usually are divided 
into two parts. The first part is the means by which the quantum object is 
prepared under the control of relevant macroscopic parameters such that it 
belongs to a well-defined statistical ensemble described by a density operator 
We acting in the Hilbert space ~ e .  The second part is called the apparatus 
and consists of a macroscopic system in a thermodynamically metastable 
state which can become unstable because of interaction with the object. As 
a consequence of the interaction, one of several different equilibrium states 
will arise and indicate the final result of a measurement (Weidlich, 1967), 
which we call "pointer position." As a many-particle quantum system, the 
metastable state of the apparatus also will be described by a density 
operator, say W~ acting in a Hilbert space ~ d :  The preparations of the 
object and the apparatus are supposed to be independent of each other such 
that the initial state of the coupled system will be the uncorrelated one, i.e., 
it is described by the density operator (We | W~). This is a highly simplified 
scheme and there are many features which I cannot describe in full detail 
or even mention here. 

As long as the irreversible dynamics towards the final equilibrium of 
the apparatus is not involved, the dynamics of the interaction process is 
described by a unitary operator. Although it is very doubtful whether the 
final state is determined by the reversible part of the process and no 
stochastics enters thereafter with respect to the resulting final equilibrium 
we will confine ourselves to consider only the unitary dynamics which may 
be given by the unitarian S acting in ~ e  | ~ d .  It should be mentioned 
that the influence of the irreversible part of the process on the final result 
has not been completely investigated up to now. We will consider here 
S(We|  W~,)S + as the final state which determines the measurement 
result. 

2.1. The Historical Scheme 

For the convenience of the reader to enter into this material, I will 
briefly recall the historical scheme, although it works only for such observ- 
ables of the object that have discrete spectra. Let the self-adjoint operator 
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acting in ;/go of the observable to be measured be given by 

B= ~ b, lOi>(@i ] 

The self-adjoint operator acting in ~fo~, and corresponding to the macro- 
scopic equilibrium quantity finally to be observed shall be given by 

A = ~ ajl~)<Vjl 
j = l  

The eigenvalues of this operator can be identified with the final pointer 
positions. In a realistic situation such as a macroscopic equilibrium the 
observable A should be highly degenerate. Here we will assume it in the 
contrary to be nondegenerate because this simplifies our reasoning without 
a big loss of generality. For the same reason we assume W~, to represent 
a pure state, say ~leJg~,.  Finally, let also W~ represent a pure state, say 
~b e ~ o .  Hence the final state of the coupled system will be S(~b | By 
a suitable choice of S and A, which formally is always possible, one gets a 
complete correlation of the pointer positions with the eigenvalues of the 
operator A in the final state. This situation is given if for each i e N 

S(•i | I"II1 ) = Oi | U~i 

holds true. By the linearity of S we have immediately 

i = 1  

such that the probability to read the pointer position ai from the apparatus 
is just given by [<0;Iq~)l 2, as it should be. 

There are some serious difficulties with this approach. The final state 
after the pointer position aj has been fixed should be a mixture rather than 
a pure state. The simplest explanation is given by Jauch (1964). Since A is 
an observable of a many-particle system that directly can be (classically) 
observed, it belongs to a commutative subset of all observables of this 
system. On the spectrum of any observable of this subset the pure state and 
the corresponding mixture give the same probability distributions. Hence 
the problem disappears. Problems arise, however, if the entropy of states is 
taken into consideration, since the pure state has a lower entropy than the 
mixture. The first idea to solve them is due to yon Neumann and states that 
this transition to a mixture is caused when the first person gets knowledge 
about the value by reading it from the apparatus. It has been assumed that 
a chain of succeeding processes of this kind happen until a human 
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consciousness irreversibly decides about the final result (see Jammer, 1974, 
Chapter 11.2 for review). Clearly, there arises a problem of objectivity since 
different persons watching the apparatus may decide differently. Although 
it seems much more natural that a final pointer position arises without 
interaction with a human brain, the first idea is still alive. The Everett- 
Wheeler interpretation of many worlds (DeWitt and Graham, 1973) solves 
the objectivity problem at least formally. The realistic point of view is to 
assume that the final pointer position is the result of an irreversible process 
inside the apparatus as mentioned at the beginning. 

Other difficulties are the following: This scheme only works for 
discrete spectra. Moreover, suitable choices for S and A only exist if B 
commutes with each universally conserved quantity (Wigner, 1952; Wigner 
and Yanase, 1963). Since each component of angular momentum of a 
closed system is a universally conserved quantity and spin-projections for 
different directions do not commute, the historical approach is too narrow 
to explain measurements of one of them. 

2.2. The Modern Approach 

A much more general and simple approach arose at the beginning of 
the sixties (Kraus, 1983). In contrast to the historical approach where the 
operator B is assumed to be given and the suitable choice of S and A has 
to be determined, the modern approach assumes S and A to be given and 
it is asked what will be measured. This formulation of the problem 
surrounds the obstructions mentioned at the end of Section 2.1 and 
includes the problem of approximate measurements as well. Let again A 
denote the self-adjoint operator that represents the observable finally to be 
observed on the apparatus. The present approach does not require the 
spectrum to be discrete. With the spectral resolution E in ~ ,  the operator 
A can be written in the form 

A = fadE(a) 

Let W~ denote the density operator of the metastable equilibrium of the 
apparatus. Let b be a Borel set on the real line such that 

tr(Wd E(b)) = 1 

b represents the set of pointer positions for which the experimenter would 
state "zero." Let Wo denote the density operator of the ensemble of objects 
which are prepared by the first part of the experimental setup acting in ~ .  
Then by the rules of quantum mechanics the probability to find the pointer 
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finally in the Borel set a is given by 

p(a, W~) = tr((W~ | W~,)S+ (1 @ E(a)S)) 

Since this expression is trace norm continuous in W~ and bounded in 
between 0 and 1, there is exactly one self-adjoint operator F(a) acting in 
~ and fulfilling 0 < F(a) -< 1 such that for each trace class operator W~ 
acting in 9fro we have 

p(a, W~) = tr(W~F(a)) 

Since p( �9 W~) is a probability measure, F( �9 ) is a positive operator valued 
measure and F(~)  = 1. 

Given the self-adjoint operator A acting on ~ ,  and the unitarian S 
acting in ogfo | ~ '~, ,  the observable measured on the object has values in 
the spectrum of A and is represented by a positive operator valued measure 
F on the real line with F (~)  = 1, which may be projection valued or not. 
If  it is projection valued, then 

B ..= f aF(da) 

is a self-adjoint operator acting in Ygr with the usual interpretation in 
quantum mechanics. If  it is not, then one may think that it approximates 
an observable in the usual sense in that it accounts for systematic errors. 
Since there is no primary principle to determine which self-adjoint operator 
in some ultraweak neighborhood of B is approximated, one usually gener- 
alizes the concept of observables in quantum mechanics to all positive 
operator valued measures on the Borel sets of the real line ~ with 
F(~)  = 1. Among them the projection valued measures are called decision 
observables by Ludwig (1985). 

From the probabilistic point of view and starting from what is given 
in nature, realizable metastable systems and their interactions with quan- 
tum objects, this scheme seems very natural. Moreover, no problems with 
continuous spectra arise. 

2.3. Informational Completeness 

Let 

F: B ( ~ ) ~ [ 0 ,  1] =M(~%)  

where B(R) denotes the algebra of Borel sets on the real line and ~ ( ~ f e )  
the set of bounded operators on ~vt%, be a positive operator valued measure 
fulfilling F(~)  = 1. Then 

W, ~ tr(W~, F ( " ) )  
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is an affine mapping from the density operators on Jef~ into the probability 
measures on B(R). F is called "informationally complete" in case this map 
is injective. It is well known that there is no informational complete projection 
valued measure. Moreover, the probability distributions defined by the 
spectral measures of the position and momentum operators together do not 
determine a density operator uniquely. But there are a lot of informationally 
complete positive operator valued measures. 

Well-known examples are given by the so-called "joint position-momen- 
tum observables," which can be generated in the following way: Let ~0 ~ L 2(E), 
II~[I = 1, <~[x~> =0,  and 

r r = 0  

Consequently, for the Galilean shifts 

@p,q(X) .'= e'PX~p(x - q) 

there hold 

< @ p,q [X@ p,q > = q and 

(x,p, q ~ )  

1 8  

Now for any density operator We of the object the function <~lp,q I W(9~lp,q > 
is integrable on the (p, q) plane. Moreover, on the Borel sets of this plane 
a probability measure is given by 

a ~--*~ (~kp, qlW~bp,q) dpdq, a~B(~) 

This probability measure can also be written as 

:=~-~ ;a I~p'q ><~]P'q[ dp d e tr( W~F(a)), F(a) 

the latter defining a positive operator valued measure fulfilling F(E) = 1. It 
has been shown by Ali and Prugove6ki (1977a,b) that this measure is 
informationally complete whenever 

< ~P I~'p,q > :~ 0 a.e. on ~2 

holds true. 
Finally, using informationally complete joint position-momentum ob- 

servables and the related "phase space representations," Singer and Stulpe 
(1992) have shown how far classical probability can approximate quantum 
probability. Let Pw~,, be the probability density on the (p, q) plane defined by 

fa p de = t r ( F ( a ) )  dq w~, W 
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or, equivalently, by 

1 

The mapping Wc~ ~-~ P wr s~2 is affine and injective, the latter being a 
consequence of  the informational completeness of  F. Now consider a finite 
set of density operators { Wi }i= ~,2,3 ....... n s [~, and let e > 0. Then there is a 
mapping 

~ ( ~ )  ~A ~--~ f ~ L  ~([]~2) 
such that for each A ~ ( ~ )  

tr(W~A) - f P w f  dp dql < c 

This means: Given a finite set of  density operators, the quantum mechanical 
expectation values can uniformly be approximated up to arbitrary accuracy 
by the corresponding classical expressions. 

3. QUANTUM MEASUREMENTS AND INFORMATION 

As mentioned in the Introduction, the statistical theory of  information 
is based on the probability distribution for the events to be observed, and 
one may ask whether it can help to get deeper insight into the nature of  
microsystems than one gets if only the statistical interpretation of  quantum 
theory is taken into consideration. The hope is that new knowledge may arise 
because new aspects of  interpretation enter with the statistical theory of  
information. 

3.1. Concepts of Classical Statistical Information Theory 

An informational setup consists in at least three things: A "source" of 
information, a transmitting "channel," and a "receiver." Let the source be 
able to send one of  n "letters" Dk, k = 1, 2, 3 . . . . .  n, and let the receiver be 
equipped with m different lamps Ll, 1 = 1, 2, 3 . . . .  , m. Now let pt(Dk) be the 
probability that Lt will shine when Dk has been sent. The receiver will be called 
"ideal with respect to {D~ )4 = 1,2,3 ...... " when m > n and, say, 

pt(D~) = ~/k, I, k = 1, 2, 3 . . . . .  n 

For  simplicity we have assumed here the channel to be ideal, too, i.e., the 
channel does not change the signals it is transmitting. 

The informational value of a single message is the central point. It is 
defined by the value of  the "information function," which depends on the 
probability by which the message is sent. This information function is 
assumed to be a mapping 

I: [0, l] ~ [0, ~ ]  
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and is determined by one further axiom which shall be described now: 
Enumerate the letters of the source by two numbers instead of one, i.e., 
write for them Dij (i = 1, 2, 3 , . . . ,  r ; j  = 1, 2, 3 . . . .  ,s t ) .  Then assume a 
coarse receiver with r lamps Lt (l = 1, 2, 3 . . . . .  r) such that 

p l ( D i l  v Dr2 v Di3 v �9 . �9 v Disi) = t~tl 

This receiver is ideal with respect to some decomposition into disjoint 
subsets of the set of letters, but it is not able to discern between 
individual elements of them. Let another receiver be equipped with 
n = ~ = l s ~  lamps L o and assume it to be ideal with respect to 
{ D i l ,  Di2,  Di3 . . . . .  Dis i} i= 1,2,3 ....... i.e., 

p,j(Dvj.) = 3w6jj, 

The second receiver, obviously, gets more information than the first one. 
Let w o denote the probability by which the letter Dij is sent. Hence 
wt = ~ i l  w o is the probability that a letter from the ith subset is sent. 
Now let I(w,.) be the information obtained when some letter from the ith 
subset has been received. For the surplus information which can only be 
obtained by the second receiver which detects, say, that D o is sent, only the 
letters {D o }s = 1,2.3 . . . . . .  i are in question. Therefore, it is natural to base it on 
the conditional probabilities 

wq 
Wq .'= - -  

wi 

This motivates the axiom 

I(w,;) = I(w,) + l(~Nij ) 
which is equivalent to 

I ( W i W i j  ) = I(wi) + I ( w q )  

It can be shown that I is determined up to a constant ceR+  by 

1(2) = - c log(2) 

It is called the information function. 

3.2. Quantum Measurements 

We now apply the concepts of statistical information theory to quan- 
tum measurements. The preparative part of an experiment shall be taken 
for the source and the registrative part for the receiver. Let the preparative 
part produce an ensemble described by the density operator W, acting in 
,ego. One is tempted to consider a decomposition into density operators W i 

W ,  = ~ , w i W t ;  wi~(O, 1), ~ w t  = 1 
i t 
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and to call W~ a letter sent with the probability w,-. But such a decomposi- 
tion is in general not unique. The minimal requirement to interpret the 
components as letters seems to be that there exists a receiver which can 
discern between them. This motivates the definition: A decomposition into 
density operators Vi 

i i 

is called an "admissible" one iff there exists a positive operator valued 
measure F on the power set of {1, 2, 3 . . . .  , n}, Fi ..=F({i}), ~ i  F~ = 1, such 
that 

tr(V;Fk) = 6~k 

There may be many admissible decompositions of one and the same density 
operator. 

Now the entropy of a density operator with respect to an admissible 
decomposition (V1, V2, V 3 , . . . ,  V,) is defined by the average information 
sent using V~ as letters: 

H w ( ( V l ,  V~, V 3 . . . .  , V,,)),= - e  ~ vi log vi, vi ~ 0 
i = l  

For this expression it can be shown that 

0 < Hw((V~,  112, V3 . . . . .  V,,)) < c log n 

where the equality holds iff vi = l/n. Moreover, consider (admissible) 
decompositions of the V~, say 

mi 

v,= E .j vj  
j = l  

such that (U,~, U,2, U,3 . . . . .  U,m.) is an admissible decomposition of W; 
then there holds 

H w ( ( V , ,  V2, V3 . . . . .  V,,)) < Hw( (UI , ,  U,2, Ul3,.  . . ,  U,,,,,,,)) 

Finally, it can be shown that the usual entropy is just the supremum of the 
entropies with respect to the admissible decompositions 

H w ' . = s u p { H w ( V l ,  V2, V3 . . . . .  V,)[admissible decompositions} 

= - c tr(W log W) 

3.3. Disturbed Transmission 

We now assume a nonideal channel which disturbs the signal. Such 
disturbance is most generally described by an affine map K operating on 
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the density operators. If W = ~7=, vi Vi is an admissible decomposition of 
the density operator W of the source, the statistical ensemble arriving at the 
receiver will be described by K(W) = ~.= l viK(Vi) and this decomposition 
of K(W) is not admissible in general. Let G denote the positive operator 
valued measure on the power set of {1, 2, 3 . . . . .  n} by which the receiver 
analyzes the signal and let Gi .'= G({i}). Then this nonideality is expressed 
by 

tr(GkK(Vi)) =:Pkt # 6kt 

Since Pkt is the probability that the lamp k will shine when the letter l is 
sent, we have ~ ,  = ~ Pkz = 1. The conditional probability that Vz has been 
sent when the lamp k is shining is given by 

v~ tr(Gk K(Vt)) 

q~t'= tr(GkK(W)) 

where ~7= 1 qk~ = 1. Now we ask for the average loss of information when 
the nonideal receiver is used instead of the ideal one. Under the hypothesis 
that the lamp k is shining, the average information - e  ~7= ~ qkt log qkt gets 
lost. If we average this loss over all lamps remembering that the kth one is 
shining with the probability tr(GkK(W)), we get the "equivocation with 
respect to (V1, V2, V3 . . . .  , Vn)" as 

Ew({Vj}).-= - c  ~ tr(G~K(W)) ~ qk, logqk~ 
k = l  / = 1  

The average information correctly transmitted is called the "transinforma- 
tion with respect to (V1, V2, V3,. . . ,  V,)" and is the average information 
produced by the source minus equivocation, 

Tw({Vj}) ,= Hw({Vj }) - Ew({Vj}) 

In the case that there exists a decomposition 

K ( W ) =  ~ ukUk 
k = l  

such that the operators Gk give rise to an ideal receiver with respect to 
(U1, U2, U3 . . . . .  U.), then one may also write 

Tw({Vj}) = HK(w)({Uj }) - IK(w)({K(Vj)}) 

where 

Ix(w)({K(Vj)})'.=-e ~ vt ~ pk, logpk, 
l = 1  k = l  

is called the noise or "irrelevance" produced by the nonideal channel. 
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4. C O N C L U S I O N  

It has been demonst ra ted  how concepts  o f  the theory o f  statistical 
informat ion can be fitted into the description o f  quantal  measurements.  
Fo r  details and proofs  as well as further literature I refer to Singer (1989). 
Technical applications o f  such investigations are possible in quan tum 
optical communica t ion  systems. I propose  they may  also give addit ional 
insight into the nature o f  microparticles, but  results do no t  yet seem to 
exist. 
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